

Virtual Aeronautics Exploration

Last updated: 18 February 2003 Revision: 05

Project Objectives

- Develop a 3D immersive application to visualize and increase understanding of aeronautics principles, an extension of those principles gained from prior study with FoilSim and RocketModeler.
- Develop lesson plans for aeronautics education that incorporates 3D immersive components.
- Determine principles and guidelines for lesson plans incorporating 3D immersive visualization.

Sample Use Cases

- Students having just designed an airfoil in FoilSim deploy the new virtual wing in an immersive environment and observe its performance and aerodynamic effects in 3D.
- An independent-study student, having just designed and tested a rocket in RocketModeler, deploys the rocket in an immersive environment and observes its performance based on the speed and direction of the wind.
- Educators creating lesson plans that incorporate 3D immersive tools rely on NASA guidelines available via web download.

Customers

- Intermediate school and high school students.
- Museum and traveling-exhibit patrons and curators.

Deliverables for Phase 1

- Three to five comprehensive and high-quality lesson plans that lead the user through basic understanding of selected aeronautics principles and 3D immersive visualization and interaction with them.
- An immersive 3D application that helps students visualize and internalize aeronautics concepts that can be best taught in 3D. The application executes on desktop computers and scales to immersive CAVE hardware/software equipment.
- Guidance and principles for incorporating 3D immersion in science lesson plans.

IVI	iesto	nes for Phase 1	
	When	What	

	When	What	Confi - dence
ET.2- L.2- VAE.1	1 Feb '03	Lesson plan topics and outlines	Green
ET.2- L.2- VAE.2	1 Mar '03	3D application spec's and requirements	Green
ET.2- L.2- VAE.3	1 Jun '03	3D aeronautics visualization application	Green
ET.2- L.2- VAE.4	1 Aug '03	Final lesson plans	Green
ET.2- L.2- VAE.5	1 Sep '03	Lesson plan guidelines	Green

People

- Project Manager: Kathy Zona,
 NASA Glenn Research Center
 216.433.2920, kathy.zona@grc.nasa.gov
- Endorsee: Kathy Zona
- Alternate contact: Ruth Petersen,
 216.433.9714, ruth.petersen@grc.nasa.gov
- Alternate contact: Dave Mazza, 216.433.6190, <u>david.a.mazza@grc.nasa.gov</u>

Partnerships

- FoilSim aerodynamic simulation project
- RocketModeler simulation project
- GRUVE immersive simulation laboratory

Technologies

- FoilSim aerodynamic simulation software
- RocketModeler simulation software
- GRUVE immersive 3D CAVE & software

Quality Assurance

- Basic testing of application in local lab
- Beta testing by education partners

Dependencies

- FoilSim and RocketModeler simulation application, project expertise and collaboration
- GRUVE lab participation
- Senior, expert educator to design and create lesson plans and lesson-plan guidelines

Assumptions

 Principles appropriate for 3D, immersive visualization can be determined and selected from those taught with FoilSim and RocketModeler.